
CS 267 Applications of Parallel Computers

Lecture 12:

Floating Point Arithmetic

David H. Bailey

Based on previous notes by James
Demmel and Dave Culler

http://www.nersc.gov/~dhbailey/cs267

Outline

° A little history

° IEEE floating point formats

° Error analysis

° Exception handling

° How to get extra precision cheaply

° Cray arithmetic - a pathological example

° Dangers of parallel and heterogeneous computing

Floating Point Arithmetic: A Little History

° 1947: Von Neumann and Goldstine:
“Can’t expect to solve most big [n>15] linear systems without carrying

many decimal digits, otherwise the computed answer would be
completely inaccurate.” (wrong)

° 1949: Turing mentions principle of backward error analysis (BEA):
“Carrying d digits is equivalent to changing the input data in the d-th place

and then solving Ax=b. So if A is only known to d digits, the answer is as
accurate as the data deserves.”

° 1961: BEA rediscovered and publicized by Wilkinson.

° 1960s: Numerous papers presented with BEA results for various
algorithms.

° 1960s-1970s: Each computer handled FP arithmetic differently:
• Format, accuracy, rounding mode and exception handling all differed.

• It was very difficult to write portable and reliable technical software.

° 1982: IEEE-754 standard defined. First implementation: Intel 8087.

° 1989: ACM Turing Award given to W. Kahan of UCB for design of the
IEEE floating point standards.

° 2000: IEEE FP arithmetic is now almost universally implemented in
general purpose computer systems.

Defining Floating Point Arithmetic

° Representable numbers:
• Scientific notation: +/- d.d…d x rexp

• sign bit +/-

• radix r (usually 2 or 10, sometimes 16)

• significand d.d…d (how many base-r digits d?)

• exponent exp (range?)

• others?

° Operations:
• arithmetic: +,-,x,/,... How is result rounded to fit in format?

• comparison (<, =, >)

• conversion between different formats - short to long FP numbers, FP to
integer, etc.

• exception handling - what to do for 0/0, 2*largest_number, etc.

• binary/decimal conversion - for I/O, when radix is not 10.

° Language/library support is required for all these operations.

IEEE Floating Point Arithmetic Standard 754 - Normalized Numbers

° Normalized Nonzero Representable Numbers: +- 1.d…d x 2exp

• Macheps = Machine epsilon = 2-#significand bits = relative error in each operation

• OV = overflow threshold = largest number

• UN = underflow threshold = smallest number

° +- Zero: +-, significand and exponent all zero
• Why bother with -0 later

Format # bits #significand bits macheps #exponent bits exponent range
---------- -------- ----------------------- ------------ -------------------- ----------------------
Single 32 23+1 2-24 (~10-7) 8 2-126 - 2127 (~10+-38)
Double 64 52+1 2-53 (~10-16) 11 2-1022 - 21023 (~10+-308)
Double >=80 >=64 <=2-64(~10-19) >=15 2-16382 - 216383 (~10+-4932)
 Extended (80 bits on all Intel machines)

IEEE 64-bit Floating-Point Format

° Bit 0: sign of entire number.

° Bits 1-11: exponent, offset by 2^10.

° Bits 12-63: mantissa.

° +0 and -0 are represented differently.

° For normalized nonzero data, a “1” is assumed
hidden at the start of mantissa, so there are a total of
53 mantissa bits.

° Approximate decimal exponent range: 10-308 to 10308.

° Approximate decimal accuracy: 16 digits.

° Largest whole number that can be represented
exactly: 253 = 9.0072 x 1015.

IEEE Accuracy Rules

° Take the exact value, and round it to the nearest
floating point number (correct rounding).

° Break ties by rounding to nearest floating point
number whose bottom bit is zero (rounding to
nearest even).

° Other rounding options also available (up, down,
towards 0).

° Don’t need exact value to do this!
• Early implementors worried it might be too expensive, but it isn’t.

° Applies to
• +,-,*,/, sqrt, conversion between formats.

• rem(a,b) = remainder of a after dividing by b.

- a = q*b + rem, q = floor(a/b)

- cos(x) = cos(rem(x,2*pi)) for |x| >= 2*pi

- cos(x) is exactly periodic, with period rounded(2*pi)

Error Analysis

° Basic error formula
• fl(a op b) = (a op b)*(1 + d) where

- op one of +,-,*,/

- |d| <= macheps

- assumes no overflow, underflow, or divide by zero.

° Example: adding 4 numbers
• fl(x1+x2+x3+x4) = {[(x1+x2)*(1+d1) + x3]*(1+d2) + x4}*(1+d3)

 = x1*(1+d1)*(1+d2)*(1+d3) + x2*(1+d1)*(1+d2)*(1+d3)

 + x3*(1+d2)*(1+d3) + x4*(1+d3)

 = x1*(1+e1) + x2*(1+e2) + x3*(1+e3) + x4*(1+e4)

 where each |ei| <~ 3*macheps

• Result is exact sum of slightly changed summands xi*(1+ei).

• Backward Error Analysis - an algorithm called numerically stable if it
gives the exact result for slightly changed inputs.

• Numerical stability is a fundamental algorithm design goal.

Example: Polynomial Evaluation using Horner’s Rule

° Use Horner’s rule to evaluate p = ΣΣΣΣ ck * xk

• Set p = cn, then for k=n-1 downto 0, set p = x*p + ck

° Apply to (x-2)9 = x9 - 18*x8 + … - 512.

° Error plot:

k=0

n

Example: Polynomial Evaluation (continued)

° (x-2)9 = x9 - 18*x8 + … - 512

° We can compute error bounds using
• fl(a op b)=(a op b)*(1+d)

Exception Handling

° What happens when the “exact value” is not a real
number, or too small or too large to represent
accurately?

° Five exceptions:
• Overflow - exact result > OV, too large to represent.

• Underflow - exact result nonzero and < UN, too small to represent.

• Divide-by-zero - nonzero/0.

• Invalid - 0/0, sqrt(-1), …

• Inexact - you made a rounding error (very common!).

° Possible responses
• Stop with error message (unfriendly, not default).

• Keep computing (default, but how?).

IEEE FP Arithmetic Standard 754: Denorms

° Denormalized Numbers: +-0.d…d x 2min_exp

• Sign bit, nonzero significand, minimum exponent.

• Fills in gap between UN and 0.

° Underflow Exception
• Occurs when exact nonzero result is less than underflow threshold UN.

• Ex: UN/3.

• return a denorm, or zero.

° Why bother?
• Necessary so that following code never divides by zero .

 if (a != b) then x = a/(a-b)

IEEE FP Arithmetic Standard 754: +- Infinity

° +- Infinity: Sign bit, zero significand, maximum exponent.

° Overflow Exception
• Occurs when exact finite result too large to represent accurately.

• Ex: 2*OV.

• return +- infinity.

° Divide by zero Exception
• return +- infinity = 1/+-0.

• sign of zero important!

° Also return +- infinity for
• 3+infinity, 2*infinity, infinity*infinity.

• Result is exact, not an exception!

IEEE FP Arithmetic Standard 754: NAN (Not A Number)

° NAN: Sign bit, nonzero significand, maximum exponent.

° Invalid Exception
• Occurs when exact result not a well-defined real number.

• 0/0.

• sqrt(-1)

• infinity-infinity, infinity/infinity, 0*infinity.

• NAN + 3.

• NAN > 3?

• Return a NAN in all these cases.

° Two kinds of NANs
• Quiet - propagates without raising an exception.

• Signaling - generate an exception when touched (good for detecting
uninitialized data).

Exception Handling User Interface

Each of the 5 exceptions has the following features:

° A sticky flag, which is set as soon as an exception
occurs.

° The sticky flag can be reset and read by the user:
• reset overflow_flag and invalid_flag.

• perform a computation.

• test overflow_flag and invalid_flag to see if any exception occurred.

° An exception flag, which indicate whether a trap
should occur:
• Not trapping is the default.

• Instead, continue computing returning a NAN, infinity or denorm.

• On a trap, there should be a user-writeable exception handler with access
to the parameters of the exceptional operation.

• Trapping or “precise interrupts” like this are rarely implemented for
performance reasons.

Exploiting Exception Handling to Design Faster Algorithms

° Paradigm:

° Quick with high probability (ie avoid branches):
• Assumes exception handling done quickly.

° Ex 1: Solving triangular system Tx=b.
• Part of BLAS2 - highly optimized, but risky.

• If T “nearly singular”, expect very large x, so scale inside inner loop:
slow but low risk.

• Use paradigm with sticky flags to detect nearly singular T.

• Up to 9x faster on Dec Alpha.

° Ex 2: Computing eigenvalues, up to 1.5x faster on CM-5.

° Demmel/Li (www.nersc.gov/~xiaoye)

1) Try fast, but possibly “risky” algorithm.
2) Quickly test for accuracy of answer (use exception handling).
3) In rare case of inaccuracy, rerun using slower “low risk” algorithm.

For k= 1 to n
 d = ak - s - bk2/d
 if |d| < tol, d = -tol
 if d < 0, count++

vs.
For k= 1 to n
 d = ak - s - bk2/d … ok to divide by 0
 count += signbit(d)

Summary of Values Representable in IEEE FP

° +- Zero

° Normalized nonzero numbers

° Denormalized numbers

° +-Infinity

° NANs
• Signaling and quiet

• Many systems have only quiet

+-

+-

+-

+-

+-

0…0 0……………………0

0…0 nonzero

1….1 0……………………0

1….1 nonzero

Not 0 or
all 1s

anything

High Precision Arithmetic

° What if 64 or 80 bits is not enough?
• Very large problems on very large machines may need more.

• Sometimes only known way to get right answer (example: mesh generation).

• Sometimes you can trade communication for extra precision.

° High precision can be simulated efficiently using standard FP ops.

° Each extended precision number s is represented by an array
(s1,s2,…,sn) where:

• each sk is a FP number

• s = s1 + s2 + … + sn in exact arithmetic

• s1 >> s2 >> … >> sn

° Ex: Computing (s1,s2) = a + b
• if |a|<|b|, swap them

• s1 = a+b … roundoff may occur

• s2 = (a - s1) + b … no roundoff!

• s1 contains leading bits of a+b, s2 contains trailing bits

° Current effort to define double-double BLAS this way:
• www.netlib.org/cgi-bin/checkout/blast/blast.pl

° Can be extended to arbitrary precision:
• Priest / Shewchuk (www.cs.berkeley.edu/~jrs)

Techniques for Very High Precision Arithmetic

° Represent data as strings of integer or FP data.

° First few words define length, sign and exponent; followed by
mantissa words.

° Use standard arithmetic algorithms, but base 2^24, 2^32 or
2^53, instead of base 10. Base 100 example:

(22, 33, 44) x (55, 66, 77) = (1210, 3267, 6292, 5445, 3388)

= (12, 43, 30, 46, 78, 88) after release of carries starting at end.

° For very high precision (> 1000dp), use FFTs for multiplication:

A x B = FFT-1 (FFT(A,0) x FFT(B,0)) (ie linear convolution)

 where (A,0) means append n words of zeroes to the n-word
mantissa.

° “Quadratically convergent” algorithms (each iteration
approximately doubles number of accurate digits) are known
for sqrt(x), pi, e^x, cos(x), and other transcendental functions.

Bailey’s High Precision Software

° Double-double package:
• Double-double data is represented as pairs of 64-bit FP numbers.

• Uses IEEE arithmetic tricks mentioned on previous slide.

• Real and complex datatypes, also sqrt, cos, e^x, etc.

• Declare DD variables with a Fortran-90 type statement, and the
proper routines from the library are automatically called whenever
any of these variables appears in an expression.

• A C++ interface and a quad-double package are in the works.

° Multiprecision package:
• Provides an arbitrarily high precision level.

• Uses FFTs and other advanced algorithms where appropriate.

• Fortran-90 interface permits very easy conversion of Fortran.

• C/C++ version is also available.

° More info: www.nersc.gov/~dhbailey

Cray Arithmetic

° Historically very important
• Crays among the fastest machines.

• Other fast machines emulated it (Fujitsu, Hitachi, NEC).

° Sloppy rounding
• fl(a + b) not necessarily (a + b)(1+d) but instead.

 fl(a + b) = a*(1+da) + b*(1+db) where |da|,|db| <= macheps

• This means that fl(a+b) could be either 0 when should be nonzero, or
twice too large when a+b “cancels”.

• Sloppy division too.

° Some impacts:
• arccos(x/sqrt(x2 + y2)) can yield exception, because x/sqrt(x2 + y2) >1

• mod (a, b) sometimes greater than b.

• Best available eigenvalue algorithm fails.

- Need ΠΠΠΠk (ak - bk) accurately.

- Need to preprocess by setting each ak = 2*ak - ak (kills bottom bit).

° Most Cray (=SGI) systems now incorporate IEEE arithmetic.

Hazards of Parallel and Heterogeneous Computing

What new bugs arise in parallel floating point
programs?

° Hazard #1: Non-repeatability - makes debugging very
hard.

° Hazard #2: Different exception handling - may cause
program to hang.

° Hazard #3: Different rounding (even on IEEE FP
machines) - may result in strange errors.

See www.netlib.org/lapack/lawns/lawn112.ps

Hazard #1: Nonrepeatability due to Nonassociativity

° Consider s= all_reduce(x,”sum”) = x1 + x2 + … + xp

° Answer depends on order of FP evaluation:
• All answers differ by at most p*macheps*(|x1| + … + |xp|)

• Some orders may overflow/underflow, others not!

° How can order of evaluation change?
• Change number of processors.

• In reduction tree, have each node add first available child sum to
its own value - order of evaluation depends on race condition,
which is unpredictable!

° Options
• Live with it, since difference likely to be small.

• Build slower version of all_reduce that guarantees evaluation
order independent of #processors, to use for debugging.

• Use double-double arithmetic to guarantee repeatable answer --
see He/Ding paper, “Using Accurate Arithmetics to improve
Numerical Reproducibility and Stability in Parallel Applications”.
URL: http://www.nersc.gov/research/SCG/ocean/NRS

Hazard #2: Heterogeneity: Different Exception Defaults

° Not all processors implement denorms fast:
• DEC Alpha 21164 in “fast mode” flushes denorms to zero:

- in fast mode, a denorm operand causes a trap.

- slow mode, to get underflow right, slows down all
operations significantly, so rarely used.

• SUN Ultrasparc in “fast mode” handles denorms correctly:

- handles underflow correctly at full speed.

- flushing denorms to zero requires trapping, slow.

° Imagine a NOW built of DEC Alphas and SUN
Ultrasparcs:
• Suppose the SUN sends a message to a DEC containing a

denorm: the DEC will trap.

• Avoiding trapping requires running either DEC or SUN in slow
mode.

• Good news: most machines are converging to fast and correct
underflow handling.

Hazard #3: Heterogeneity: Data Dependent Branches

° Mixed Cray/IEEE machines may round differently.

° Different “IEEE machines” may round differently:
• Intel uses 80 bit FP registers for intermediate computations

• IBM RS6K has MAC = Multiply-ACcumulate instruction

- d = a*b+c with one rounding error, i.e. a*b good to 104 bits

• SUN has neither “extra precise” feature.

• Different compiler optimizations may round differently (yuck).

° Impact: same expression can yield different values on different
machines.

° Taking different branches can yield nonsense, or deadlock.

Compute s redundantly
 or
s = reduce_all(x,min)
if (s > 0) then
 compute and return a
else
 communicate
 compute and return b
end

Further References on Floating Point Arithmetic

° Notes for Prof. Kahan’s CS267 lecture from 1996
• www.cs.berkeley.edu/~wkahan/ieee754status/cs267fp.ps

• Note for Kahan 1996 cs267 Lecture

° Prof. Kahan’s “Lecture Notes on IEEE 754”
• www.cs.berkeley.edu/~wkahan/ieeestatus/ieee754.ps

° Prof. Kahan’s “The Baleful Effects of Computer
Benchmarks on Applied Math, Physics and
Chemistry
• www.cs.berkeley/~wkahan/ieee754status/baleful.ps

° Notes for Demmel’s CS267 lecture from 1995
• www.cs.berkeley.edu/~demmel/cs267/lecture21/lecture21.html

